LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator.
نویسندگان
چکیده
Transcriptional feedback loops are central to the architecture of eukaryotic circadian clocks. Models of the Arabidopsis thaliana circadian clock have emphasized transcriptional repressors, but recently, Myb-like REVEILLE (RVE) transcription factors have been established as transcriptional activators of central clock components, including PSEUDO-RESPONSE REGULATOR5 (PRR5) and TIMING OF CAB EXPRESSION1 (TOC1). We show here that NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED1 (LNK1) and LNK2, members of a small family of four LNK proteins, dynamically interact with morning-expressed oscillator components, including RVE4 and RVE8. Mutational disruption of LNK1 and LNK2 function prevents transcriptional activation of PRR5 by RVE8. The LNKs lack known DNA binding domains, yet LNK1 acts as a transcriptional activator in yeast and in planta. Chromatin immunoprecipitation shows that LNK1 is recruited to the PRR5 and TOC1 promoters in planta. We conclude that LNK1 is a transcriptional coactivator necessary for expression of the clock genes PRR5 and TOC1 through recruitment to their promoters via interaction with bona fide DNA binding proteins such as RVE4 and RVE8.
منابع مشابه
LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.
Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and cl...
متن کاملWheels within wheels: new transcriptional feedback loops in the Arabidopsis circadian clock
The circadian clock allows organisms to temporally coordinate their biology with the diurnal oscillation of the environment, which enhances plant performance. Accordingly, a fuller understanding of the circadian clock mechanism may contribute to efforts to optimize plant performance. One recurring theme in clock mechanism is coupled transcription-translation feedback loops. To date, the majorit...
متن کاملThe LNK1 night light-inducible and clock-regulated gene is induced also in response to warm-night through the circadian clock nighttime repressor in Arabidopsis thaliana
Ambient temperature has two fundamental impacts on the Arabidopsis circadian clock system in the processes referred to as temperature compensation and entrainment, respectively. These temperature-related longstanding problems have not yet been fully clarified. Recently, we provided evidence that temperature signals feed into the clock transcriptional circuitry through the evening complex (EC) n...
متن کاملTime-dependent sequestration of RVE8 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis.
Circadian clocks sustain 24-h rhythms in physiology and metabolism that are synchronized with the day/night cycle. In plants, the regulatory network responsible for the generation of rhythms has been broadly investigated over the past years. However, little is known about the intersecting pathways that link the environmental signals with rhythms in cellular metabolism. Here, we examine the role...
متن کاملMaking the clock tick: the transcriptional landscape of the plant circadian clock
Circadian clocks are molecular timekeepers that synchronise internal physiological processes with the external environment by integrating light and temperature stimuli. As in other eukaryotic organisms, circadian rhythms in plants are largely generated by an array of nuclear transcriptional regulators and associated co-regulators that are arranged into a series of interconnected molecular loops...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2014